Series Associated with Certain Irregular Third-Order Boundary Value Problems
نویسندگان
چکیده
منابع مشابه
On two classes of third order boundary value problems with finite spectrum
The spectral analysis of two classes of third order boundary value problems is investigated. For every positive integer $m$ we construct two classes of regular third order boundary value problems with at most $2m+1$ eigenvalues, counting multiplicity. These kinds of finite spectrum results are previously known only for even order boundary value problems.
متن کاملSolving third-order boundary value problems with quartic splines
In this article, we present a novel second order numerical method for solving third order boundary value problems using the quartic polynomial splines. We establish the convergence of the method. We present numerical experiments to demonstrate the efficiency of the method and validity of our second order method, which shows that present method gives better results.
متن کاملnumerical solution of third-order boundary value problems
in this paper, we use a third degree b-spline function to construct an approximate solution forthird order linear and nonlinear boundary value problems coupled with the least square method. severalexamples are given to illustrate the efficiency of the proposed technique.
متن کاملSOME BOUNDARY VALUE PROBLEMS FOR A NON-LINEAR THIRD ORDER O.D.E.
Existence of periodic solutions for non-linear third order autonomous differential equation (O.D.E.) has not been investigated to as large an extent as non-linear second order. The popular Poincare-Bendixon theorem applicable to second order equation is not valid for third order equation (see [3]). This conclusion opens a way for further investigation.
متن کاملExistence of positive solutions for fourth-order boundary value problems with three- point boundary conditions
In this work, by employing the Krasnosel'skii fixed point theorem, we study the existence of positive solutions of a three-point boundary value problem for the following fourth-order differential equation begin{eqnarray*} left { begin{array}{ll} u^{(4)}(t) -f(t,u(t),u^{prime prime }(t))=0 hspace{1cm} 0 leq t leq 1, & u(0) = u(1)=0, hspace{1cm} alpha u^{prime prime }(0) - beta u^{prime prime pri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Transactions of the American Mathematical Society
سال: 1930
ISSN: 0002-9947
DOI: 10.2307/1989587